Robust portfolio selection based on a multi-stage scenario tree

نویسندگان

  • Ruijun Shen
  • Shuzhong Zhang
چکیده

The aim of this paper is to apply the concept of robust optimization introduced by Bel-Tal and Nemirovski to the portfolio selection problems based on multi-stage scenario trees. The objective of our portfolio selection is to maximize an expected utility function value (or equivalently, to minimize an expected disutility function value) as in a classical stochastic programming problem, except that we allow for ambiguities to exist in the probability distributions along the scenario tree. We show that such a problem can be formulated as a finite convex program in the conic form, on which general convex optimization techniques can be applied. In particular, if there is no short-selling, and the disutility function takes the form of semi-variance downside risk, and all the parameter ambiguity sets are ellipsoidal, then the problem becomes a second order cone program, thus tractable. We use SeDuMi to solve the resulting robust portfolio selection problem, and the simulation results show that the robust consideration helps to reduce the variability of the optimal values caused by the parameter ambiguity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-stage robust model for portfolio selection by using goal programming

In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One rea...

متن کامل

A robust multi-objective global supplier selection model under currency fluctuation and price discount

Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss dec...

متن کامل

Scenario Tree Reduction Methods Through Changing Node Values

To develop practical and efficient scenario tree reduction methods, we introduce a new methodology which allows for changing node values, and an easy-tocalculate distance function to measure the difference between two scenario trees. Based on minimizing the new distance, we first construct a primitive scenario tree reduction model which also minimizes the Wasserstein distance between the reduce...

متن کامل

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Scenario tree generation for multi-stage stochastic programs

We broaden the theoretical basis for generating scenario trees in multi-stage stochastic programming based on stability analysis. Numerical experience for constructing trees of demand and price scenarios in electricity portfolio management of a municipal power utility is also provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 191  شماره 

صفحات  -

تاریخ انتشار 2008